Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 99: 323-336, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001602

RESUMO

The isolation of populations in the Iberian, Italian and Balkan peninsulas during the ice ages define four main paradigms that explain much of the known distribution of intraspecific genetic diversity in Europe. In this study we investigated the phylogeography of a wide-spread bat species, the bent-winged bat, Miniopterus schreibersii around the Mediterranean basin and in the Caucasus. Environmental Niche Modeling (ENM) analysis was applied to predict both the current distribution of the species and its distribution during the last glacial maximum (LGM). The combination of genetics and ENM results suggest that the populations of M. schreibersii in Europe, the Caucasus and Anatolia went extinct during the LGM, and the refugium for the species was a relatively small area to the east of the Levantine Sea, corresponding to the Mediterranean coasts of present-day Syria, Lebanon, Israel, and northeastern and northwestern Egypt. Subsequently the species first repopulated Anatolia, diversified there, and afterwards expanded into the Caucasus, continental Europe and North Africa after the end of the LGM. The fossil record in Iberia and the ENM results indicate continuous presence of Miniopterus in this peninsula that most probably was related to the Maghrebian lineage during the LGM, which did not persist afterwards. Using our results combined with similar findings in previous studies, we propose a new paradigm explaining the general distribution of genetic diversity in Europe involving the recolonization of the continent, with the main contribution from refugial populations in Anatolia and the Middle East. The study shows how genetics and ENM approaches can complement each other in providing a more detailed picture of intraspecific evolution.


Assuntos
Quirópteros/classificação , África do Norte , Animais , Península Balcânica , Quirópteros/genética , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Europa (Continente) , Variação Genética , Oriente Médio , Modelos Biológicos , Filogenia , Filogeografia
2.
Mol Phylogenet Evol ; 97: 196-212, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26826601

RESUMO

Despite many studies illustrating the perils of utilising mitochondrial DNA in phylogenetic studies, it remains one of the most widely used genetic markers for this purpose. Over the last decade, nuclear introns have been proposed as alternative markers for phylogenetic reconstruction. However, the resolution capabilities of mtDNA and nuclear introns have rarely been quantified and compared. In the current study we generated a novel ∼5kb dataset comprising six nuclear introns and a mtDNA fragment. We assessed the relative resolution capabilities of the six intronic fragments with respect to each other, when used in various combinations together, and when compared to the traditionally used mtDNA. We focused on a major clade in the horseshoe bat family (Afro-Palaearctic clade; Rhinolophidae) as our case study. This old, widely distributed and speciose group contains a high level of conserved morphology. This morphological stasis renders the reconstruction of the phylogeny of this group with traditional morphological characters complex. We sampled multiple individuals per species to represent their geographic distributions as best as possible (122 individuals, 24 species, 68 localities). We reconstructed the species phylogeny using several complementary methods (partitioned Maximum Likelihood and Bayesian and Bayesian multispecies-coalescent) and made inferences based on consensus across these methods. We computed pairwise comparisons based on Robinson-Foulds tree distance metric between all Bayesian topologies generated (27,000) for every gene(s) and visualised the tree space using multidimensional scaling (MDS) plots. Using our supported species phylogeny we estimated the ancestral state of key traits of interest within this group, e.g. echolocation peak frequency which has been implicated in speciation. Our results revealed many potential cryptic species within this group, even in taxa where this was not suspected a priori and also found evidence for mtDNA introgression. We demonstrated that by using just two introns one can recover a better supported species tree than when using the mtDNA alone, despite the shorter overall length of the combined introns. Additionally, when combining any single intron with mtDNA, we showed that the result is highly similar to the mtDNA gene tree and far from the true species tree and therefore this approach should be avoided. We caution against the indiscriminate use of mtDNA in phylogenetic studies and advocate for pilot studies to select nuclear introns. The selection of marker type and number is a crucial step that is best based on critical examination of preliminary or previously published data. Based on our findings and previous publications, we recommend the following markers to recover phylogenetic relationships between recently diverged taxa (<20 My) in bats and other mammals: ACOX2, COPS7A, BGN, ROGDI and STAT5A.


Assuntos
Núcleo Celular/genética , Quirópteros/classificação , Quirópteros/genética , DNA Mitocondrial/genética , Íntrons/genética , Filogenia , Animais , Teorema de Bayes , Ecolocação , Feminino , Funções Verossimilhança , Masculino , Filogeografia , Especificidade da Espécie
3.
PLoS One ; 9(7): e103452, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25075972

RESUMO

Animals employ an array of signals (i.e. visual, acoustic, olfactory) for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1) echolocation peak frequency is an honest signal of body size; (2) females preferentially select males with high frequency calls during the mating season; (3) high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals.


Assuntos
Quirópteros/fisiologia , Ecolocação , Preferência de Acasalamento Animal , Vocalização Animal , Animais , Feminino , Masculino , Dados de Sequência Molecular
4.
Zootaxa ; 3794: 108-24, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24870314

RESUMO

We used an integrative approach combining cranio-dental characters, mitochondrial and nuclear data and acoustic data to show the presence in the genus Miniopterus of a cryptic species from the Maghreb region. This species was previously recognised as Miniopterus schreibersii (Kuhl, 1817). Miniopterus maghrebensis sp. nov. can be differentiated from M. schreibersii sensu stricto on the basis of cranial characters and from mitochondrial DNA and microsatellite evidence. Although slight external morphological and acoustic differences were noted between the two species, these criteria alone did not allow reliable species identification from live animals. Based on the specimens identified morphologically and/or genetically, the distribution range of M. maghrebensis sp. nov. extends from northern Morocco to south of the High Atlas Mountains and northern Tunisia. The new cryptic species is found in sympatry with M. schreibersii s.str. near coastal regions of North Africa.


Assuntos
Quirópteros/classificação , DNA Mitocondrial/química , Animais , Biodiversidade , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Ecolocação , Feminino , Masculino , Região do Mediterrâneo , Tunísia , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...